流场数值计算的目的是什么?主要方法有哪些?其基本思路是什么?各自的适用范围是什么?
答:这个问题的范畴好大啊。简要的说一下个人的理解吧:流场数值求解的目的就是为了得到某个流动状态下的相关参数,这样可以节省实验经费,节约实验时间,并且可以模拟一些不可能做实验的流动状态。主要方法有有限差分,有限元和有限体积法,好像最近还有无网格法和波尔兹曼法(格子法)。基本思路都是将复杂的非线性差分 / 积分方程简化成简单的代数方程。相对来说,有限差分法对网格的要求较高,而其他的方法就要灵活的多
可压缩流动和不可压缩流动,在数值解法上各有何特点?为何不可压缩流动在求解时反而比可压缩流动有更多的困难?
答:注:这个问题不是一句两句话就能说清楚的,大家还是看下面的两篇小文章吧,摘自《计算流体力学应用》,读完之后自有体会。
可压缩 Euler 及 Navier-Stokes 方程数值解
描述无粘流动的基本方程组是 Euler 方程组,描述粘性流动的基本方程组是 Navier-Stokes 方程组。用数值方法通过求解 Euler 方程和 Navier-Stokes 方程模拟流场是计算流体动力学的重要内容之一。由于飞行器设计实际问题中的绝大多数流态都具有较高的雷诺数,这些流动粘性区域很小,由对流作用主控,因此针对 Euler 方程发展的计算方法,在大多数情况下对 Navier-Stokes 方程也是有效的,只需针对粘性项用中心差分离散。
用数值方法求解无粘 Euler 方程组的历史可追溯到 20 世纪 50 年代,具有代表性的方法是 1952 年 Courant 等人以及 1954 年 Lax 和 Friedrichs 提出的一阶方法。从那时开始,人们发展了大量的差分格式。Lax 和 Wendroff 的开创性工作是非定常 Euler(可压缩 Navier-Stokes) 方程组数值求解方法发展的里程碑。二阶精度 Lax-Wendroff 格式应用于非线性方程组派生出了一类格式,其共同特点是格式空间对称,即在空间上对一维问题是三点中心格式,在时间上是显式格式,并且该类格式是从时间空间混合离散中导出的。该类格式中最流行的是 MacCormack 格式。
采用时空混合离散方法,其数值解趋近于定常时依赖于计算中采用的时间步长。尽管由时间步长项引起的误差与截断误差在数量级上相同,但这却体现了一个概念上的缺陷,因为在计算得到的定常解中引进了一个数值参数。将时间积分从空间离散中分离出来就避免了上述缺陷。常用的时空分别离散格式有中心型格式和迎风型格式。空间二阶精度的中心型格式 (一维问题是三点格式) 就属于上述范畴。该类格式最具代表性的是 Beam-Warming 隐式格式和 Jameson 等人采用的 Runge-Kutta 时间积分方法发展的显式格式。迎风型差分格式共同特点是所建立起的特征传播特性与差分空间离散方向选择的关系是与无粘流动的物理特性一致的。第一个显式迎风差分格式是由 Courant 等人构造的,并推广为二阶精度和隐式时间积分方法。基于通量方向性离散的 Steger-Warming 和 Van Leer 矢通量分裂方法可以认为是这类格式的一种。该类格式的第二个分支是 Godunov 方法,该方法在每个网格步求解描述相邻间断 (Riemann 问题) 的当地一维 Euler 方程。根据这一方法 Engquist、Osher 和 Roe 等人构造了一系列引入近似 Riemann 算子的格式,这就是著名的通量差分方法。
对于没有大梯度的定常光滑流动,所有求解 Euler 方程格式的计算结果都是令人满意的,但当出现诸如激波这样的间断时,其表现确有很大差异。绝大多数最初发展起来的格式,如 Lax-Wendroff 格式中心型格式,在激波附近会产生波动。人们通过引入人工粘性构造了各种方法来控制和限制这些波动。在一个时期里,这类格式在复杂流场计算中得到了应用。然而,由于格式中含有自由参数,对不同问题要进行调整,不仅给使用上带来了诸多不便,而且格式对激波分辨率受到影响,因而其在复杂流动计算中的应用受到了一定限制。
另外一种方法是力图阻止数值波动的产生,而不是在其产生后再进行抑制。这种方法是建立在非线性限制器的概念上,这一概念最初由 Boris 和 Book 及 Van Leer 提出,并且通过 Harten 发展的总变差减小 (TVD, Total Variation Diminishing) 的重要概念得以实现。通过这一途径,数值解的变化以非线性的方式得以控制。这一类格式的研究和应用,在 20 世纪 80 年代形成了一股发展浪潮。1988 年,张涵信和庄逢甘利用热力学熵增原理,通过对差分格式修正方程式的分析,构造了满足熵增条件能够捕捉激波的无波动、无自由参数的耗散格式(NND 格式)。该类格式在航空航天飞行器气动数值模拟方面得到了广泛应用。
1987 年,Harten 和 Osher 指出,TVD 格式最多能达到二阶精度。为了突破这一精度上的限制引入了实质上无波动 (ENO) 格式的概念。该类格式 “几乎是 TVD” 的,Harten 因此推断这些格式产生的数值解是一致有界的。继 Harten 和 Osher 之后,Shu 和 Osher 将 ENO 格式从一维推广到多维。J.Y.Yang 在三阶精度 ENO 差分格式上也做了不少工作。1992 年,张涵信另辟蹊径,在 NND 格式的基础上,发展了一种能捕捉激波的实质上无波动、无自由参数的三阶精度差分格式 (简称 ENN 格式)。1994 年,Liu、Osher 和 Chan 发展了 WENO(Weighted Essentially Non-Oscillatory) 格式。WENO 格式是基于 ENO 格式构造的高阶混合格式,它在保持了 ENO 格式优点的同时,计算流场中虚假波动明显减少。此后,Jiang 提出了一种新的网格模板光滑程度的度量方法。目前高阶精度格式的研究与应用是计算流体力学的热点问题之一。
不可压缩 Navier-Stokes 方程求解
不可压缩流体力学数值解法有非常广泛的需求。从求解低速空气动力学问题,推进器内部流动,到水动力相关的液体流动以及生物流体力学等。满足这么广泛问题的研究,要求有与之相应的较好的物理问题的数学模型以及鲁棒的数值算法。
相对于可压缩流动,不可压缩流动的数值求解困难在于,不可压缩流体介质的密度保持常数,而状态方程不再成立,连续方程退化为速度的散度为零的方程。由此,在可压缩流动的计算中可用于求解密度和压力的连续方程在不可压缩流动求解中仅是动量方程的一个约束条件,由此求解不可压缩流动的压力称为一个困难。求解不可压缩流动的各种方法主要在于求解不同的压力过程。
目前,主要有两类求解不可压缩流体力学的方法,原始变量方法和非原始变量方法。求解不可压缩流动的原始变量方法是将 Navier-Stokes 方程写成压力和速度的形式,进行直接求解,这种形式已被广为应用。非原始变量方法主要有 Fasel 提出的流函数 - 涡函数法、Aziz 和 Hellums 提出的势函数 - 涡函数方法。在求解三维流动问题时,上述每一个方法都需要反复求解三个 Possion 方程,非常耗时。原始变量方法可以分为三类:第一种方法是 Harlow 和 Welch 首先提出的压力 Possion 方程方法。该方法首先将动量方程推进求得速度场,然后利用 Possion 方程求解压力,这一种方法由于每一时间步上需要求解 Possion 方程,求解非常耗时。第二种方法是 Patanker 和 Spalding 的 SIMPLE(Semi-Implicit Method for Pressure-Linked Equation) 法,它是通过动量方程求得压力修正项对速度的影响,使其满足速度散度等于零的条件作为压力控制方程。第三种方法是虚拟压缩方法,这一方法是 Chorin 于 1967 年提出的。该方法的核心就是通过在连续方程中引入一个虚拟压缩因子,再附加一项压力的虚拟时间导数,使压力显式地与速度联系起来,同时方程也变成了双曲型方程。这样,方程的形式就与求解可压缩流动的方程相似,因此,许多求解可压缩流动的成熟方法都可用于不可压缩流动的求解。
目前,由于基于求解压力 Possion 方程的方法非常复杂及耗时,难于求解具体的工程实际问题,因此用此方法解决工程问题的工作越来越少。工程上常用的主要是 SIMPLE 方法和虚拟压缩方法。
什么叫边界条件?有何物理意义?它与初始条件有什么关系?
边界条件与初始条件是控制方程有确定解的前提。
边界条件是在求解区域的边界上所求解的变量或其导数随时间和地点的变化规律。对于任何问题,都需要给定边界条件。
初始条件是所研究对象在过程开始时刻各个求解变量的空间分布情况,对于瞬态问题,必须给定初始条件,稳态问题,则不用给定。对于边界条件与初始条件的处理,直接影响计算结果的精度。
在瞬态问题中,给定初始条件时要注意的是:要针对所有计算变量,给定整个计算域内各单元的初始条件;初始条件一定是物理上合理的,要靠经验或实测结果。
在数值计算中,偏微分方程的双曲型方程、椭圆型方程、抛物型方程有什么区别?
我们知道很多描述物理问题的控制方程最终就可以归结为偏微分方程,描述流动的控制方程也不例外。
从数学角度,一般将偏微分方程分为椭圆型(影响域是椭圆的,与时间无关,且是空间内的闭区域,故又称为边值问题),双曲型(步进问题,但依赖域仅在两条特征区域之间),抛物型(影响域以特征线为分界线,与主流方向垂直;具体来说,解的分布与瞬时以前的情况和边界条件相关,下游的变化仅与上游的变化相关;也称为初边值问题);
从物理角度,一般将方程分为平衡问题(或稳态问题),时间步进问题。
两种角度,有这样的关系:椭圆型方程描述的一般是平衡问题(或稳态问题),双曲型和抛物型方程描述的一般是步进问题。
至于具体的分类方法,大家可以参考一般的偏微分方程专著,里面都有介绍。关于各种不同近似水平的流体控制方程的分类,大家可以参考张涵信院士编写《计算流体力学—差分方法的原理与应用》里面讲的相当详细。
三种类型偏微分方程的基本差别如下:
1)三种类型偏微分方程解的适定性(即解存在且唯一,并且解稳定)要求对定解条件有不同的提法;
2)三种类型偏微分方程解的光滑性不同,对定解条件的光滑性要求也不同;
椭圆型和抛物型方程的解是充分光滑的,因此对定解条件的光滑性要求不高。而双曲型方程允许有所谓的弱解存在(如流场中的激波),即解的一阶导数可以不连续,所以对定解条件的光滑性要求很高,这也正是采用有限元法求解双曲型方程困难较多的原因之一。
3)三种类型偏微分方程的影响区域和依赖区域不一样。
在双曲型和抛物型方程所控制的流场中,某一点的影响区域是有界的,可采用步进求解。如对双曲型方程求解时,为了与影响区域的特征一致,采用上风格式比较适宜。而椭圆型方程的影响范围遍及全场,必须全场求解,所采用的差分格式也要采用相应的中心格式。
在网格生成技术中,什么叫贴体坐标系?什么叫网格独立解?
数值计算的与实验值之间的误差来源只要有这几个:物理模型近似误差(无粘或有粘,定常与非定常,二维或三维等等),差分方程的截断误差及求解区域的离散误差(这两种误差通常统称为离散误差),迭代误差(离散后的代数方程组的求解方法以及迭代次数所产生的误差),舍入误差(计算机只能用有限位存储计算物理量所产生的误差)等等。在通常的计算中,离散误差随网格变细而减小,但由于网格变细时,离散点数增多,舍入误差也随之加大。
由此可见,网格数量并不是越多越好的。
再说说网格无关性的问题,由上面的介绍,我们知道网格数太密或者太疏都可能产生误差过大的计算结果,网格数在一定的范围内的结果才与实验值比较接近,这样在划分网格时就要求我们首先依据已有的经验大致划分一个网格进行计算,将计算结果(当然这个计算结果必须是收敛的)与实验值进行比较(如果没有实验值,则不需要比较,后面的比较与此类型相同),再酌情加密或减少网格,再进行计算,再与实验值进行比较,并与前一次计算结果比较,如果两次的计算结果相差较小(例如在 2%),说明这一范围的网格的计算结果是可信的,说明计算结果是网格无关的。再加密网格已经没有什么意义(除非你要求的计算精度较高)。但是,如果你用粗网格也能得到相差很小的计算结果,从计算效率上讲,你就可以完全使用粗网格去完成你的计算。加密或者减少网格数量,你可以以一倍的量级进行。
在 GAMBIT 中显示的 “check” 主要通过哪几种来判断其网格的质量?及其在做网格时大致注意到哪些细节?
判断网格质量的方面有:
Area 单元面积,适用于 2D 单元,较为基本的单元质量特征。
Aspect Ratio 长宽比,不同的网格单元有不同的计算方法,等于 1 是最好的单元,如正三角形,正四边形,正四面体,正六面体等;一般情况下不要超过 5:1.
Diagonal Ratio 对角线之比,仅适用于四边形和六面体单元,默认是大于或等于 1 的,该值越高,说明单元越不规则,最好等于 1,也就是正四边形或正六面体。
Edge Ratio 长边与最短边长度之比,大于或等于 1,最好等于 1,解释同上。
EquiAngle Skew 通过单元夹角计算的歪斜度,在 0 到 1 之间,0 为质量最好,1 为质量最差。最好是要控制在 0 到 0.4 之间。
EquiSize Skew 通过单元大小计算的歪斜度,在 0 到 1 之间,0 为质量最好,1 为质量最差。2D 质量好的单元该值最好在 0.1 以内,3D 单元在 0.4 以内。
MidAngle Skew 通过单元边中点连线夹角计算的歪斜度,仅适用于四边形和六面体单元,在 0 到 1 之间,0 为质量最好,1 为质量最差。
Size Change 相邻单元大小之比,仅适用于 3D 单元,最好控制在 2 以内。
Stretch 伸展度。通过单元的对角线长度与边长计算出来的,仅适用于四边形和六面体单元,在 0 到 1 之间,0 为质量最好,1 为质量最差。
Taper 锥度。仅适用于四边形和六面体单元,在 0 到 1 之间,0 为质量最好,1 为质量最差。
Volume 单元体积,仅适用于 3D 单元,划分网格时应避免出现负体积。
Warpage 翘曲。仅适用于四边形和六面体单元,在 0 到 1 之间,0 为质量最好,1 为质量最差。
以上只是针对 Gambit 帮助文件的简单归纳,不同的软件有不同的评价单元质量的指标,使用时最好仔细阅读帮助文件。
另外,在 Fluent 中的窗口键入:grid quality 然后回车,Fluent 能检查网格的质量,主要有以下三个指标:
1.Maxium cell squish: 如果该值等于 1,表示得到了很坏的单元;
2.Maxium cell skewness: 该值在 0 到 1 之间,0 表示最好,1 表示最坏;
3.Maxium ‘aspect-ratio’: 1 表示最好。
在两个面的交界线上如果出现网格间距不同的情况时,即两块网格不连续时,怎么样克服这种情况呢?
这个问题就是非连续性网格的设置,一般来说就是把两个交接面设置为一对 interface。
另外,作此操作可能出现的问题及可供参考的解决方法为:
问题:把两个面 (其中一个实际是由若干小面组成,将若干小面定义为了 group 了) 拼接在一起,也就是说两者之间有流体通过,两个面个属不同的体,网格导入到 fluent 时,使用 interface 时出现网格 check 的错误,将 interface 的边界条件删除,就不会发生网格检查的错误,如何将两个面的网格相连?
原因:interface 后的两个体的交接面,fluent 以将其作为内部流体处理(非重叠部分默认为 wall,合并后网格会在某些地方发生畸变,导致合并失败,也可能准备合并的两个面几何位置有误差, 应该准确的在同一几何位置 (合并的面大小相等时), 在合并之前要合理分块。
解决方法:为了避免网格发生畸变 (可能一个面上的网格跑到另外的面上了),可以一面网格粗, 一面网格细避免; 再者就是通过将一个面的网格直接映射到另一面上的,两个面默认为 interior. 也可以将网格拼接一起.
在设置 GAMBIT 边界层类型时需要注意的几个问题:a、没有定义的边界线如何处理?b、计算域内的内部边界如何处理(2D)?
答:gambit 默认为 wall,一般情况下可以到 fluent 再修改边界类型。 内部边界如果是 split 产生的,那么就不需再设定了,如果不是,那么就需要设定为 interface 或者是 internal
为何在划分网格后,还要指定边界类型和区域类型?常用的边界类型和区域类型有哪些?
答:要得到一个问题的定解就需要有定解条件,而边界条件就属于定解条件。也就是说边界条件确定了结果。不同的流体介质有不同的物理属性,也就会得到不同的结果,所以必须指定区域类型。对于 gambit 来说,默认的区域类型是 fluid,所以一般情况下不需要再指定
何为流体区域(fluid zone)和固体区域(solid zone)?为什么要使用区域的概念?FLUENT 是怎样使用区域的?
Fluid Zone 是一个单元组,是求解域内所有流体单元的综合。所激活的方程都要在这些单元上进行求解。向流体区域输入的信息只是流体介质(材料)的类型。对于当前材料列表中没有的材料,需要用户自行定义。注意,多孔介质也当作流体区域对待。
Solid Zone 也是一个单元组,只不过这组单元仅用来进行传热计算,不进行任何的流动计算。作为固体处理的材料可能事实上是流体,但是假定其中没有对流发生,固体区域仅需要输入材料类型。
Fluent 中使用 Zone 的概念,主要是为了区分分块网格生成,边界条件的定义等等;
如何监视 FLUENT 的计算结果?如何判断计算是否收敛?在 FLUENT 中收敛准则是如何定义的?分析计算收敛性的各控制参数,并说明如何选择和设置这些参数?解决不收敛问题通常的几个解决方法是什么?
可以采用残差控制面板来显示;或者采用通过某面的流量控制;如监控出口上流量的变化;采用某点或者面上受力的监视;涡街中计算达到收敛时,绕流体的面上受的升力为周期交变,而阻力为平缓的直线。
怎样判断计算结果是否收敛?
1、观察点处的值不再随计算步骤的增加而变化;
2、各个参数的残差随计算步数的增加而降低,最后趋于平缓;
3、要满足质量守恒(计算中不牵涉到能量)或者是质量与能量守恒(计算中牵涉到能量)。
特别要指出的是,即使前两个判据都已经满足了,也并不表示已经得到合理的收敛解了,因为,如果松弛因子设置得太紧,各参数在每步计算的变化都不是太大,也会使前两个判据得到满足。此时就要再看第三个判据了。
还需要说明的就是, 一般我们都希望在收敛的情况下,残差越小越好,但是残差曲线是全场求平均的结果,有时其大小并不一定代表计算结果的好坏,有时即使计算的残差很大,但结果也许是好的,关键是要看计算结果是否符合物理事实,即残差的大小与模拟的物理现象本身的复杂性有关,必须从实际物理现象上看计算结果。比如说一个全机模型,在大攻角情况下, 解震荡得非常厉害,而且残差的量级也总下不去,但这仍然是正确的,为什么呢,因为大攻角下实际流动情形就是这样的,不断有涡的周期性脱落, 流场本身就是非定常的,所以解也是波动的,处理的时候取平均就可以呢:)
什么叫松弛因子?松弛因子对计算结果有什么样的影响?它对计算的收敛情况又有什么样的影响?
1、亚松驰(Under Relaxation):所谓亚松驰就是将本层次计算结果与上一层次结果的差值作适当缩减,以避免由于差值过大而引起非线性迭代过程的发散。用通用变量来写出时,为松驰因子(Relaxation Factors)。《数值传热学 - 214》
2、FLUENT 中的亚松驰:由于 FLUENT 所解方程组的非线性,我们有必要控制的变化。一般用亚松驰方法来实现控制,该方法在每一部迭代中减少了的变化量。亚松驰最简单的形式为:单元内变量等于原来的值 加上亚松驰因子 a 与 变化的积, 分离解算器使用亚松驰来控制每一步迭代中的计算变量的更新。这就意味着使用分离解算器解的方程,包括耦合解算器所解的非耦合方程(湍流和其他标量)都会有一个相关的亚松驰因子。在 FLUENT 中,所有变量的默认亚松驰因子都是对大多数问题的最优值。这个值适合于很多问题,但是对于一些特殊的非线性问题(如:某些湍流或者高 Rayleigh 数自然对流问题),在计算开始时要慎重减小亚松驰因子。使用默认的亚松驰因子开始计算是很好的习惯。如果经过 4 到 5 步的迭代残差仍然增长,你就需要减小亚松驰因子。有时候,如果发现残差开始增加,你可以改变亚松驰因子重新计算。在亚松驰因子过大时通常会出现这种情况。最为安全的方法就是在对亚松驰因子做任何修改之前先保存数据文件,并对解的算法做几步迭代以调节到新的参数。最典型的情况是,亚松驰因子的增加会使残差有少量的增加,但是随着解的进行残差的增加又消失了。如果残差变化有几个量级你就需要考虑停止计算并回到最后保存的较好的数据文件。注意:粘性和密度的亚松驰是在每一次迭代之间的。而且,如果直接解焓方程而不是温度方程(即:对 PDF 计算),基于焓的温度的更新是要进行亚松驰的。要查看默认的亚松弛因子的值,你可以在解控制面板点击默认按钮。对于大多数流动,不需要修改默认亚松弛因子。但是,如果出现不稳定或者发散你就需要减小默认的亚松弛因子了,其中压力、动量、k 和 e 的亚松弛因子默认值分别为 0.2,0.5,0.5 和 0.5。对于 SIMPLEC 格式一般不需要减小压力的亚松弛因子。在密度和温度强烈耦合的问题中,如相当高的 Rayleigh 数的自然或混合对流流动,应该对温度和 / 或密度(所用的亚松弛因子小于 1.0)进行亚松弛。相反,当温度和动量方程没有耦合或者耦合较弱时,流动密度是常数,温度的亚松弛因子可以设为 1.0。对于其它的标量方程,如漩涡,组分,PDF 变量,对于某些问题默认的亚松弛可能过大,尤其是对于初始计算。你可以将松弛因子设为 0.8 以使得收敛更容易。
SIMPLE 与 SIMPLEC 比较
在 FLUENT 中,可以使用标准 SIMPLE 算法和 SIMPLEC(SIMPLE-Consistent)算法,默认是 SIMPLE 算法,但是对于许多问题如果使用 SIMPLEC 可能会得到更好的结果,尤其是可以应用增加的亚松驰迭代时,具体介绍如下:
对于相对简单的问题(如:没有附加模型激活的层流流动),其收敛性已经被压力速度耦合所限制,你通常可以用 SIMPLEC 算法很快得到收敛解。在 SIMPLEC 中,压力校正亚松驰因子通常设为 1.0,它有助于收敛。但是,在有些问题中,将压力校正松弛因子增加到 1.0 可能会导致不稳定。对于所有的过渡流动计算,强烈推荐使用 PISO 算法邻近校正。它允许你使用大的时间步,而且对于动量和压力都可以使用亚松驰因子 1.0。对于定常状态问题,具有邻近校正的 PISO 并不会比具有较好的亚松驰因子的 SIMPLE 或 SIMPLEC 好。对于具有较大扭曲网格上的定常状态和过渡计算推荐使用 PISO 倾斜校正。当你使用 PISO 邻近校正时,对所有方程都推荐使用亚松驰因子为 1.0 或者接近 1.0。如果你只对高度扭曲的网格使用 PISO 倾斜校正,请设定动量和压力的亚松驰因子之和为 1.0 比如:压力亚松驰因子 0.3,动量亚松驰因子 0.7)。如果你同时使用 PISO 的两种校正方法,推荐参阅 PISO 邻近校正中所用的方法
在 FLUENT 运行过程中,经常会出现 “turbulence viscous rate” 超过了极限值,此时如何解决?而这里的极限值指的是什么值?修正后它对计算结果有何影响
Let’s take care of the warning “turbulent viscosity limited to viscosity ratio**” which is not physical. This problem is mainly due to one of the following:
1)Poor mesh quality(i.e.,skewness> 0.85 for Quad/Hex, or skewness > 0.9 for Tri/Tetra elements). {what values do you have?}
2)Use of improper turbulent boudary conditions.
3)Not supplying good initial values for turbulent quantities.
出现这个警告,一般来讲,最可能的就是网格质量的问题,尤其是 Y + 值的问题;在划分网格的时候要注意,第一层网格高度非常重要,可以使用 NASA 的 Viscous Grid Space Calculator 来计算第一层网格高度;如果这方面已经注意了,那就可能是边界条件中有关湍流量的设置问题,
在 FLUENT 运行计算时,为什么有时候总是出现 “reversed flow”?其具体意义是什么?有没有办法避免?如果一直这样显示,它对最终的计算结果有什么样的影响?
这个问题的意思是出现了回流,这个问题相对于湍流粘性比的警告要宽松一些,有些 case 可能只在计算的开始阶段出现这个警告,随着迭代的计算,可能会消失,如果计算一段时间之后,警告消失了,那么对计算结果是没有什么影响的,如果这个警告一直存在,可能需要作以下处理:
- 如果是模拟外部绕流,出现这个警告的原因可能是边界条件取得距离物体不够远,如果边界条件取的足够远,该处可能在计算的过程中的确存在回流现象;对于可压缩流动,边界最好取在 10 倍的物体特征长度之处;对于不可压缩流动,边界最好取在4倍的物体特征长度之处。
- 如果出现了这个警告,不论对于外部绕流还是内部流动,可以使用 pressure-outlet 边界条件代替 outflow 边界条件改善这个问题。
什么叫问题的初始化?在 FLUENT 中初始化的方法对计算结果有什么样的影响?初始化中的 “patch” 怎么理解?
问题的初始化就是在做计算时,给流场一个初始值,包括压力、速度、温度和湍流系数等。理论上,给的初始场对最终结果不会产生影响,因为随着跌倒步数的增加,计算得到的流场会向真实的流场无限逼近,但是,由于 Fluent 等计算软件存在像离散格式精度(会产生离散误差)和截断误差等问题的限制,如果初始场给的过于偏离实际物理场,就会出现计算很难收敛,甚至是刚开始计算就发散的问题。因此,在初始化时,初值还是应该给的尽量符合实际物理现象。这就要求我们对要计算的物理场,有一个比较清楚的理解。
初始化中的 patch 就是对初始化的一种补充,比如当遇到多相流问题时,需要对各相的参数进行更细的限制,以最大限度接近现实物理场。这些就可以通过 patch 来实现,patch 可以对流场分区进行初始化,还可以通过编写简单的函数来对特定区域初始化。
什么叫 PDF 方法?FLUENT 中模拟煤粉燃烧的方法有哪些?
概率密度函数输运输运方程方法 (PDF 方法) 是近年来逐步建立起来的描述湍流两相流动的新模型方法。所谓的概率密度函数 (Probability Density Function, 简称 PDF) 方法是基于湍流场随机性和概率统计描述,将流场的速度、温度和组分浓度等特征量作为随机变量,研究其概率密度函数在相空间的传递行为的研究方法。PDF 模型介于统观模拟和细观模拟之间,是从随机运动的分子动力论和两相湍流的基本守恒定律出发,探讨两相湍流的规律,因此可作为发展双流体模型框架内两相湍流模型的理论基础。它实质上是沟通 E-L 模型和 E-E 模型的桥梁,可以用颗粒运动的拉氏分析通过统计理论,即 PDF 方程的积分建立封闭的 E-E 两相湍流模型
非预混湍流燃烧过程的正确模拟要求同时模拟混合和化学反应过程。FLUENT 提供了四种反应模拟方法:即有限率反应法、混合分数 PDF 法、不平衡(火焰微元)法和预混燃烧法。火焰微元法是混合分数 PDF 方法的一种特例。该方法是基于不平衡反应的,混合分数 PDF 法不能模拟的不平衡现象如火焰的悬举和熄灭,NOx 的形成等都可用该方法模拟。但由于该方法还未完善,在 FLUENT 只能适用于绝热模型。
对许多燃烧系统,辐射式主要的能量传输方式,因此在模拟燃烧系统时,对辐射能量的传输的模拟也是非常重要的。在 FLUENT 中,对于模拟该过程的模型也是非常全面的。包括 DTRM、P-1、Rosseland、DO 辐射模型,还有用 WSGG 模型来模拟吸收系数。
FLUENT 运行过程中,出现残差曲线震荡是怎么回事?如何解决残差震荡的问题?残差震荡对计算收敛性和计算结果有什么影响?
待研究ing...
数值模拟过程中,什么情况下出现伪扩散的情况?以及对于伪扩散在数值模拟过程中如何避免?
假扩散(false diffusion)的含义:
基本含义:由于对流—扩散方程中一阶导数项的离散格式的截断误差小于二阶而引起较大数值计算误差的现象。有的文献中将人工粘性(artificial viscosity)或数值粘性(numerical viscosity)视为它的同义词。
拓宽含义:现在通常把以下三种原因引起的数值计算误差都归在假扩散的名称下
- 非稳态项或对流项采用一阶截差的格式;
- 流动方向与网格线呈倾斜交叉 (多维问题);
- 建立差分格式时没有考虑到非常数的源项的影响。
克服或减轻假扩散的格式或方法,
为克服或减轻数值计算中的假扩散 (包括流向扩散及交叉扩散) 误差,应当:
1. 采用截差阶数较高的格式;
2. 减轻流线与网格线之间的倾斜交叉现象或在构造格式时考虑到来流方向的影响。
3. 至于非常数源项的问题,目前文献中,还没有为克服这种影响而专门构造的格式,但是高阶格式显然对减轻其影响是有利的。
FLUENT 轮廓(contour)显示过程中,有时候标准轮廓线显示通常不能精确地显示其细节,特别是对于封闭的 3D 物体(如柱体),其原因是什么?如何解决?
FLUENT 等高线(contour)显示过程中,可以通过调节显示的水平等级来调节其显示细节,Levels… 最大值允许设置为 100. 对于封闭的 3D 物体,可以通过建立 Surface,监视 Surface 上的量来显示计算结果。或者计算之后将结果导入到 Tecplot 中,作切片图显示。
如果采用非稳态计算完毕后,如何才能更形象地显示出动态的效果图?
对于非定常计算,可以通过创建动画来形象地显示出动态的效果图。
Solve->Animate->Define…,具体操作请参考 Fluent 用户手册。
在 FLUENT 结果的后处理过程中,如何将美观漂亮的定性分析的效果图和定量分析示意图插入到论文中来说明问题?
三种方法来得到用于插入到论文的图片:
- 在 Fluent 中显示你想得到的效果图的窗口,可以直接在任务栏中右键该窗口将其复制到剪贴板,保存;或者打印到文件,保存。
- 在 Fluent 中,在你想要保存相关窗口的效果图时,首先激活效果图监视窗口,就是用鼠标左键监视窗口,然后在 Fluent 中操作,Fluent->File->Hardcopy…,选择好你想要的图片格式,然后就可以保存了。
- 将计算结果或者相关数据导入到 Tecplot 中,然后作出你想要的效果图,这种方法得出的图片,个人感觉比 Fluent 得到的图片美观简洁大方
在 DPM 模型中,粒子轨迹能表示粒子在计算域内的行程,如何显示单一粒径粒子的轨道(如 20 微米的粒子)?
首先选择 DMP 模型,在 set injection properties 面板中,选择 injection type 的类型为 single,
然后设置初始条件,如位置(x,y,z), 速度,直径(如 20 微米的粒子),温度,质量流率等!
设定完成后,你就可以行迭代了。等气相和离散相收敛以后,你就可以追踪粒子轨迹。在 display 中打开 particle tracks 面板进行操作!
在 FLUENT 定义速度入口时,速度入口的适用范围是什么?湍流参数的定义方法有哪些?各自有什么不同?
速度入口的边界条件适用于不可压流动,需要给定进口速度以及需要计算的所有标量值。速度入口边界条件不适合可压缩流动,否则入口边界条件会使入口处的总温或总压有一定的波动。
关于湍流参数的定义方法,根据所选择的湍流模型的不同有不同的湍流参数组合,具体可以参考 Fluent 用户手册的相关章节,也可以参考王福军的书《计算流体动力学分析—CFD 软件原理与应用》的第 214-216 页,
在计算完成后,如何显示某一断面上的温度值?如何得到速度矢量图?如何得到流线?
这些都可以用 tecplot 来处理 将 fluent 计算的 date 和 case 文件倒入到 tecplot 中 断面可以做切片
速度矢量图流线图 直接就可以选择相应选项来查看
分离式求解器和耦合式求解器的适用场合是什么?分析两种求解器在计算效率与精度方面的区别
分离式求解器以前主要用于不可压缩流动和微可压流动,而耦合式求解器用于高速可压流动。现在,两种求解器都适用于从不可压到高速可压的很大范围的流动,但总的来讲,当计算高速可压流动时,耦合式求解器比分离式求解器更有优势。
Fluent 默认使用分离式求解器,但是,对于高速可压流动,由强体积力 (如浮力或者旋转力) 导致的强耦合流动,或者在非常精细的网格上求解的流动,需要考虑耦合式求解器。耦合式求解器耦合了流动和能量方程,常常很快便可以收敛。耦合式求解器所需要的内存约是分离式求解器的 1.5 到 2 倍,选择时可以根据这一情况来权衡利弊。在需要耦合隐式的时候,如果计算机内存不够,就可以采用分离式或耦合显式。耦合显式虽然也耦合了流动和能量方程,但是它还是比耦合隐式需要的内存少,当然它的收敛性也相应差一些。
需要注意的是,在分离式求解器中提供的几个物理模型,在耦合式求解器中是没有的。这些物理模型包括:流体体积模型 (VOF),多项混合模型,欧拉混合模型,PDF 燃烧模型,预混合燃烧模型,部分预混合燃烧模型,烟灰和 NOx 模型,Rosseland 辐射模型,熔化和凝固等相变模型,指定质量流量的周期流动模型,周期性热传导模型和壳传导模型等。
而下列物理模型只在耦合式求解器中有效,在分离式求解器中无效:理想气体模型,用户定义的理想气体模型,NIST 理想气体模型,非反射边界条件和用于层流火焰的化学模型。
FLUENT 中常用的文件格式类型:dbs,msh,cas,dat,trn,jou,profile 等有什么用处?
在 Gambit 目录中,有三个文件,分别是 default_id.dbs,jou,trn 文件,对 Gambit 运行 save,将会在工作目录下保存这三个文件:default_id.dbs,default_id.jou,default_id.trn。
jou 文件是 gambit 命令记录文件,可以通过运行 jou 文件来批处理 gambit 命令;
dbs 文件是 gambit 默认的储存几何体和网格数据的文件;
trn 文件是记录 gambit 命令显示窗(transcript)信息的文件;
msh 文件可以在 gambit 划分网格和设置好边界条件之后 export 中选择 msh 文件输出格式,该文件可以被 fluent 求解器读取。
Case 文件包括网格,边界条件,解的参数,用户界面和图形环境。
Data 文件包含每个网格单元的流动值以及收敛的历史纪录(残差值)。Fluent 自动保存文件类型,默认为 date 和 case 文件
Profile 文件边界轮廓用于指定求解域的边界区域的流动条件。例如,它们可以用于指定入口平面的速度场。
读入轮廓文件,点击菜单 File/Read/Profile… 弹出选择文件对话框,你就可以读入边界轮廓文件了。
写入轮廓文件,你也可以在指定边界或者表面的条件上创建轮廓文件。例如:你可以在一个算例的出口条件中创建一个轮廓文件,然后在其它算例中读入该轮廓文件,并使用出口轮廓作为新算例的入口轮廓。要写一个轮廓文件,你需要使用 Write Profile 面板 (Figure 1),菜单:File/Write/Profile
在计算区域内的某一个面(2D)或一个体(3D)内定义体积热源或组分质量源。如何把这个 zone 定义出来?而且这个 zone 仍然是流体流动的。
在 gambit 中先将需要的 zone 定义出来,对于要随流体流动我觉得这个可以用动网格来处理 在动网格设置界面 将这个随流体流动的 zone 设置成刚体 这样既可以作为 zone 不影响流体流通 也可以随流体流动 只是其运动的 udf 不好定义 最好根据其流动规律编动网格 udf
如何选择单、双精度解算器的选择
Fluent 的单双精度求解器适合于所有的计算平台,在大多数情况下,单精度求解器就能很好地满足计算精度要求,且计算量小。
但在有些情况下推荐使用双精度求解器:
- 如果几何体包含完全不同的尺度特征(如一个长而壁薄的管),用双精度的;
- 如果模型中存在通过小直径管道相连的多个封闭区域,不同区域之间存在很大的压差,用双精度。
- 对于有较高的热传导率的问题或对于有较大的长宽比的网格,用双精度。
求解器为 flunet5/6 在设置边界条件时,specify boundary types 下的 types 中有三项关于 interior,interface,internal 设置,在什么情况下设置相应的条件?它们之间的区别是什么?interior 好像是把边界设置为内容默认的一部分;interface 是两个不同区域的边界区,比如说离心泵的叶轮旋转区和叶轮出口的交界面;internal;请问以上三种每个的功能?最好能举一两个例子说明一下,因为这三个都是内部条件吧,好像用的很多。
interface,interior,internal boundary 区别?
在 Fluent 中,Interface 意思为 “交接面”,主要用途有三个:多重坐标系模型中静态区域与运动区域之间的交接面的定义;滑移网格交接处的交接面定义,例如:两车交会,转子与定子叶栅模型,等等,在 Fluent 中,interface 的交接重合处默认为 interior,非重合处默认为 wall;非一致网格交接处,例如:上下网格网格间距不同等。
Interior 意思为 “内部的”,在 Fluent 中指计算区域。
Internal 意思为 “内部的”,比如说内能,内部放射率等,具体应用不太清楚。
FLUENT 并行计算中 Flexlm 如何对多个 License 的管理?
在 FLEXlm LMTOOLS Utility-〉config services->service name 里选好你要启动的软件的配备的 service name,然后配置好下边的 path to the lmgrd.exe file 和 path to the license file,然后 save service, 转到 FLEXlm LMTOOLS Utility->config services-〉start/stop/reread 下,选中要启动的 license,start server 即可
在 “solver” 中 2D 、axisymmetric 和 axisymmetric swirl 如何区别?对于 2D 和 3D 各有什么适用范围?
从字面的意思很好理解 axisymmetric 和 axisymmetric swirl 的差别:
axisymmetric:是轴对称的意思,也就是关于一个坐标轴对称,2D 的 axisymmetric 问题仍为 2D 问题。
而 axisymmetric swirl:是轴对称旋转的意思,就是一个区域关于一条坐标轴回转所产生的区域,这产生的将是一个回转体,是 3D 的问题。在 Fluent 中使用这个,是将一个 3D 的问题简化为 2D 问题,减少计算量,需要注意的是,在 Fluent 中,回转轴必须是 x 轴。
在设置速度边界条件时,提到了 “Velocity formulation(Absolute 和 Relative)” 都是指的动量方程的相对速度表示和绝对速度表示,这两个速度如何理解?
在定义速度入口边界条件时,Reference Frame 中有 Absolute 和 Relative to Adjacent Cell Zone 的选项,关于这个,Fluent 用户手册上是这样写的:“If the cell zone adjacent to the velocity inlet is moving, you can choose to specify relative or absolute velocities by selecting Relative to Adjacent Cell Zone or Absolute in the Reference Frame drop-down list. If the adjacent cell zone is not moving, Absolute and Relative to Adjacent Cell Zone will be equivalent, so you need not visit the list.”
如果速度入口处的单元在计算的过程中有运动发生的情况(如果你使用了运动参考系或者滑移网格),你可以选择使用指定相对于邻近单元区域的速度或在参考坐标系中的绝对速度来定于入口处的速度;如果速度入口处的相邻单元在计算过程中没有发生运动,那么这两种方法所定义的速度是等价的。
Specifying Relative or Absolute Velocity
If the cell zone adjacent to the wall is moving (e.g., if you are using a moving reference frame or a sliding mesh), you can choose to specify velocities relative to the zone motion by enabling the Relative to Adjacent Cell Zone option. If you choose to specify relative velocities, a velocity of zero means that the wall is stationary in the relative frame, and therefore moving at the speed of the adjacent cell zone in the absolute frame. If you choose to specify absolute velocities (by enabling the Absolute option), a velocity of zero means that the wall is stationary in the absolute frame, and therefore moving at the speed of the adjacent cell zone–but in the opposite direction–in the relative reference frame.
If you are using one or more moving reference frames, sliding meshes, or mixing planes, and you want the wall to be fixed in the moving frame, it is recommended that you specify relative velocities (the default) rather than absolute velocities. Then, if you modify the speed of the adjacent cell zone, you will not need to make any changes to the wall velocities, as you would if you specified absolute velocities.
Note that if the adjacent cell zone is not moving, the absolute and relative options are equivalent.
这个问题好像问的不是特别清楚,在 Fluent6.3 中,问题出现的这个 Velocity formulation(Absolute 和 Relative) 设置,应该是设置求解器时出现的选项,在使用 Pressure-based 的求解器时,Fluent 允许用户定义的速度形式有绝对的和相对的,使用相对的速度形式是为了在 Fluent 中使用运动参考系以及滑移网格方便定义速度,关于这两个速度的理解很简单,可以参考上面的说明;如果使用 Density-based 的求解器,这个求解器的算法只允许统一使用绝对的速度形式。
对于出口有回流的问题,在出口应该选用什么样的边界条件(压力出口边界条件、质量出口边界条件等)计算效果会更好?
答:给定流动出口的静压。对于有回流的出口,压力出口边界条件比质量出口边界条件边界条件更容易收敛。
压力出口边界条件压力根据内部流动计算结果给定。其它量都是根据内部流动外推出边界条件。该边界条件可以处理出口有回流问题,合理的给定出口回流条件,有利于解决有回流出口问题的收敛困难问题。 出口回流条件需要给定:回流总温(如果有能量方程),湍流参数(湍流计算),回流组分质量分数(有限速率模型模拟组分输运),混合物质量分数及其方差(PDF 计算燃烧)。如果有回流出现,给的表压将视为总压,所以不必给出回流压力。回流流动方向与出口边界垂直。
对于不同求解器,离散格式的选择应注意哪些细节?实际计算中一阶迎风差分与二阶迎风差分有什么异同?
离散格式对求解器性能的影响
控制方程的扩散项一般采用中心差分格式离散,而对流项则可采用多种不同的格式进行离散。Fluent 允许用户为对流项选择不同的离散格式 (注意:粘性项总是自动地使用二阶精度的离散格式)。默认情况下,当使用分离式求解器时,所有方程中的对流项均用一阶迎风格式离散;当使用耦合式求解器时,流动方程使用二阶精度格式,其他方程使用一阶精度格式进行离散。此外,当选择分离式求解器时,用户还可为压力选择插值方式。
当流动与网格对齐时,如使用四边形或六面体网格模拟层流流动,使用一阶精度离散格式是可以接受的。但当流动斜穿网格线时,一阶精度格式将产生明显的离散误差 (数值扩散)。因此,对于 2D 三角形及 3D 四面体网格,注意使用二阶精度格式,特别是对复杂流动更是如此。一般来讲,在一阶精度格式下容易收敛,但精度较差。有时,为了加快计算速度,可先在一阶精度格式下计算,然后再转到二阶精度格式下计算。如果使用二阶精度格式遇到难于收敛的情况,则可考虑改换一阶精度格式。
对于转动及有旋流的计算,在使用四边形及六面体网格式,具有三阶精度的 QUICK 格式可能产生比二阶精度更好的结果。但是,一般情况下,用二阶精度就已足够,即使使用 QUICK 格式,结果也不一定好。乘方格式 (Power-law Scheme) 一般产生与一阶精度格式相同精度的结果。中心差分格式一般只用于大涡模拟,而且要求网格很细的情况。
对于 FLUENT 的耦合解算器,对时间步进格式的主要控制是 Courant 数(CFL),那么 Courant 数对计算结果有何影响?
courant number 实际上是指时间步长和空间步长的相对关系,系统自动减小 courant 数,这种情况一般出现在存在尖锐外形的计算域,当局部的流速过大或者压差过大时出错,把局部的网格加密再试一下。
在 Fluent 中,用 courant number 来调节计算的稳定性与收敛性。一般来说,随着 courant number 的从小到大的变化,收敛速度逐渐加快,但是稳定性逐渐降低。所以具体的问题,在计算的过程中,最好是把 courant number 从小开始设置,看看迭代残差的收敛情况,如果收敛速度较慢而且比较稳定的话,可以适当的增加 courant number 的大小,根据自己具体的问题,找出一个比较合适的 courant number,让收敛速度能够足够的快,而且能够保持它的稳定性。
在分离求解器中,FLUENT 提供了压力速度耦和的三种方法:SIMPLE,SIMPLEC 及 PISO,它们的应用有什么不同
在 FLUENT 中,可以使用标准 SIMPLE 算法和 SIMPLEC(SIMPLE-Consistent)算法,默认是 SIMPLE 算法,但是对于许多问题如果使用 SIMPLEC 可能会得到更好的结果,尤其是可以应用增加的亚松驰迭代时,具体介绍如下:
对于相对简单的问题(如:没有附加模型激活的层流流动),其收敛性已经被压力速度耦合所限制,你通常可以用 SIMPLEC 算法很快得到收敛解。在 SIMPLEC 中,压力校正亚松驰因子通常设为 1.0,它有助于收敛。但是,在有些问题中,将压力校正松弛因子增加到 1.0 可能会导致不稳定。
对于所有的过渡流动计算,强烈推荐使用 PISO 算法邻近校正。它允许你使用大的时间步,而且对于动量和压力都可以使用亚松驰因子 1.0。对于定常状态问题,具有邻近校正的 PISO 并不会比具有较好的亚松驰因子的 SIMPLE 或 SIMPLEC 好。对于具有较大扭曲网格上的定常状态和过渡计算推荐使用 PISO 倾斜校正。
当你使用 PISO 邻近校正时,对所有方程都推荐使用亚松驰因子为 1.0 或者接近 1.0。如果你只对高度扭曲的网格使用 PISO 倾斜校正,请设定动量和压力的亚松驰因子之和为 1.0 比如:压力亚松驰因子 0.3,动量亚松驰因子 0.7)。如果你同时使用 PISO 的两种校正方法,推荐参阅 PISO 邻近校正中所用的方法
对于大多数情况,在选择选择压力插值格式时,标准格式已经足够了,但是对于特定的某些模型使用其它格式有什么特别的要求?
压力插值方式的列表只在使用 Pressure-based 求解器中出现。一般情况下可选择 Standard;对于含有高回旋数的流动,高 Rayleigh 数的自然对流,高速旋转流动,多孔介质流动,高曲率计算区域等流动情况,选择 PRESTO 格式;对于可压缩流动,选择 Second Order;当然也可以选择 Second Order 以提高精度;对于含有大体力的流动,选择 Body Force Weighted。
注意:Second Order 格式不可以用于多孔介质;在使用 VOF 和 Mixture 多相流模型时,只能使用 PRESTO 或 Body Force Weighted 格式。
关于压力插值格式的详细内容,请参考 Fluent 用户手册
讨论在数值模拟过程中采用四面体网格计算效果好,还是采用六面体网格更妙呢?
在 2D 中,FLUENT 可以使用三角形和四边形单元以及它们的混合单元所构成的网格。在 3D 中,它可以使用四面体,六面体,棱锥,和楔形单元所构成的网格。选择那种类型的单元取决于你的应用。当选择网格类型的时候,应当考虑以下问题:
设置时间(setup time)
计算成本(computational expense)
数值耗散(numerical diffusion )
- 设置时间
在工程实践中,许多流动问题都涉及到比较复杂的几何形状。一般来说,对于这样的问题,建立结构或多块(是由四边形或六面体元素组成的)网格是极其耗费时间的。所以对于复杂几何形状的问题,设置网格的时间是使用三角形或四面体单元的非结构网格的主要动机。然而,如果所使用的几何相对比较简单,那么使用哪种网格在设置时间方面可能不会有明显的节省。
如果你已经有了一个建立好的结构代码的网格,例如 FLUENT 4,很明显,在 FLUENT 中使用这个网格比重新再生成一个网格要节省时间。这也许是你在 FLUENT 模拟中使用四边形或六面体单元的一个非常强的动机。注意,对于从其它代码导入结构网格,包括 FLUENT 4,FLUENT 有一个筛选的范围。
- 计算成本
当几何比较复杂或流程的长度尺度的范围比较大的时候,可以创建是一个三角形 / 四面体网格,因为它与由四边形 / 六面体元素所组成的且与之等价的网格比较起来,单元要少的多。这是因为一个三角形 / 四面体网格允许单元群集在被选择的流动区域中,而结构四边形 / 六面体网格一般会把单元强加到所不需要的区域中。对于中等复杂几何,非结构四边形 / 六面体网格能构提供许多三角形 / 四面体网格所能提供的优越条件。
在一些情形下使用四边形 / 六面体元素是比较经济的,四边形 / 六面体元素的一个特点是它们允许一个比三角形 / 四面体单元大的多的纵横比。一个三角形 / 四面体单元中的一个大的纵横比总是会影响单元的偏斜(skewness),而这不是所希望的,因为它可能妨碍计算的精确与收敛。所以,如果你有一个相对简单的几何,在这个几何中流动与几何形状吻合的很好,例如一个瘦长管道,你可以运用一个高纵横比的四边形 / 六面体单元的网格。这个网格拥有的单元可能比三角形 / 四面体少的多。
- 数值耗散
在多维情形中,一个错误的主要来源是数值耗散,术语也为伪耗散 (false diffusion)。之所以称为“伪耗散” 是因为耗散不是一个真实现象,而是它对一个流动计算的影响近似于增加真实耗散系数的影响。
关于数值耗散的观点有:
当真实耗散小,即情形出现对流受控时(即本身物理耗散比较小时),数值的耗散是最值得注意的。
关于流体流动的所有实际的数值设计包括有限数量的数值耗散。这是因为数值耗散起于切断错误,而切断错误是一个表达离散形式的流体流动方程的结果。
用于 FLUENT 中的二阶离散方案有助于减小数值耗散对解的影响。
数值耗散的总数反过来与网格的分解有关。因此,处理数值耗散的一个方法是改进网格。
当流动与网格相吻一致时,数值耗散减到最小。
最后这一点与网格的选择非常有关。很明显,如果你选择一个三角形 / 四面体网格,那么流动与网格总不能一致。另一方面,如果你使用一个四边形 / 六面体网格,这种情况也可能会发生,但对于复杂的流动则不会。在一个简单流动中,例如过一长管道的流动,你可以依靠一个四边形 / 六面体网格以尽可能的降低数值的耗散。在这种情形,使用一个四边形 / 六面体网格可能有些有利条件,因为与使用一个三角形 / 四面体单元比起来,你将能够使用比较少的单元而得到一个更好的解。
在 UDF 中 compiled 型的执行方式和 interpreted 型的执行方式有什么不同
编译型 UDF:
采用与 FLUENT 本身执行命令相同的方式构建的。采用一个称为 Makefile 的脚本来引导 c 编译器构造一个当地目标编码库(目标编码库包含有将高级 c 语言源代码转换为机器语言。)这个共享库在运行时通过 “动态加载” 过程载入到 FLUENT 中。目标库特指那些使用的计算机体系结构,和运行的特殊 FLUENT 版本。因此,FLUENT 版本升级,计算机操作系统改变以及在另一台不同类型的计算机上运行时,这个库必须进行重构。
编译型 UDF 通过用户界面将原代码进行编译,分为两个过程。这两个过程是:访问编译 UDF 面板,从源文件第一次构建共享库的目标文件中;然后加载共享库到 FLUENT 中。
采用与 FLUENT 本身执行命令相同的方式构建的。采用一个称为 Makefile 的脚本来引导 c 编译器构造一个当地目标编码库(目标编码库包含有将高级 c 语言源代码转换为机器语言。)这个共享库在运行时通过 “动态加载” 过程载入到 FLUENT 中。目标库特指那些使用的计算机体系结构,和运行的特殊 FLUENT 版本。因此,FLUENT 版本升级,计算机操作系统改变以及在另一台不同类型的计算机上运行时,这个库必须进行重构。
编译型 UDF 通过用户界面将原代码进行编译,分为两个过程。这两个过程是:访问编译 UDF 面板,从源文件第一次构建共享库的目标文件中;然后加载共享库到 FLUENT 中。
解释型 UDF:
解释型 UDF 同样也是通过图形用户界面解释原代码,却只有单一过程。这一过程伴随着运行,包含对解释型 UDF 面板的访问,这一面板位于源文件中的解释函数。
在 FLUENT 内部,源代码通过 c 编译器被编译为即时的、体系结构独立的机器语言。UDF 调用时,机器编码通过内部模拟器或者解释器执行。额外层次的代码导致操作不利, 但是允许解释型 UDF 在不同计算结构,操作系统和 FLUENT 版本上很容易实现共享。如果迭代速度成为焦点时,解释型 UDF 可以不用修改就用编译编码直接运行。
解释型 UDF 使用的解释器不需要有标准的 c 编译器的所有功能。特别是解释型 UDF 不含有下列 C 程序语言部分:
goto 语句声明;无 ANSI-C 语法原形;没有直接数据结构引用;局部结构的声明;联合函数指针;函数阵列;
解释型 UDF 与编译型 UDF 的区别:
在解释型与编译型 UDF 之间的主要的不同之处是很重要的,例如当你想在 UDF 中引进新的数据结构时。解释型不能通过直接数据引用获得 FLUENT 解算器的数据; 只能间接的通过 FLUENT 预先提供的宏来获取数据。具体请参考第 7 章。
在解释型与编译型 UDF 之间的主要的不同之处是很重要的,例如当你想在 UDF 中引进新的数据结构时。解释型不能通过直接数据引用获得 FLUENT 解算器的数据; 只能间接的通过 FLUENT 预先提供的宏来获取数据。具体请参考第 7 章。
总结一下,当选择写解释型或者编译型 UDF 时,记住以下几条:
解释型 UDF:对别的运行系统是可移植的,可以作为编译型运行,不需要 c 编译器,比编译型的要慢,在使用 C 程序语言时有限制,不能链接到编译系统或者用户库,只能通过预先提供的宏访问 FLUENT 中存储的数据。
编译型 UDF:运行要快于解释型 UDF,对 C 程序语言没有限制,可以使用任何 ANSI-compliant c 编译器进行编译,可以调用其他语言写的函数(特别是独立于系统和编译器的),如果包含某些解释器不能处理的 c 语言部分时用解释型 UDF 是不行的。
总之,当决定哪一类型的 udf 应用到你的模型时:
对小的,直接的函数用解释型;对复杂函数使用编译型
FLUENT 模拟飞行器外部流场,最高 MA 多少时就不准确了?MA 达到一定的程度做模拟需注意哪些问题?
答:不准确的标准是什么?没有判断标准就没办法判断。一般来说 fluent 计算马赫数大于 3~5 之后就不是很理想了(不过相信版本越新结果越好)。计算的时候应该从低马赫数慢慢往上算。比如说如果计算马赫数是 5 的话,就在马赫数 4 的计算结果上算。另外,求解器需选择耦合和显式的。(对于 6.3 来说,选择基于密度的求解器)
做飞机设计时,经常计算一些翼型,可是经常出现计算出来的阻力是负值,出现负值究竟是什么原因,是网格的问题还是计算参数设置的问题?
如果这个问题对于某个人经常出现的话,那就比较奇怪了,阻力是负值,难道就是传说中的前缘吸力现身?呵呵,只是开个玩笑:),估计肯定是计算错了或者是设置错了。在飞机翼型气动里面,阻力主要有两种成份:压差阻力和摩擦阻力。应该是正值的。
排除是计算过程的其他问题,我觉得在使用 Fluent 进行这方面的计算时,需要注意两个方面:
- 参考值的设置,也就是 Report->Reference Values…
这些参考值,是用来计算 Re,以及升力,阻力,力矩系数所要用到的。如果设置不当,即使计算过程是对的,所得到的升阻力等系数也是不对的。对于 2D 翼型仿真计算,比较容易出错的就是里面的 Area 该写什么,单位是平方米,这里应该填写翼型的弦长(Chord Length),The area here is actually area per unit depth;就是每单位展长的面积。
- 在监视力的时候,关于力的矢量方向设置,Solve->Monitor->Force…
这个矢量方向千万不要小看,不能填错,填错了就可能出现阻力是负值的错误,Fluent 之前的版本所附带的例子,关于 NACA0012 翼型的计算中,这里的矢量就设置错了,受错误例子的影响,韩占忠那本书中三角形翼型的那个例子也设置错误,在书的第 112 页的第 6 步的第(7)小步就设置错误,升力系数的力方向矢量,应该是 X=-0.087155,Y=0.996195;前面他也写到要注意:要确保阻力和升力分别与来流平行和垂直,那么这两个力矢量肯定是垂直的了,那么这两个矢量的点乘就肯定等于零了;所幸的是,在 Fluent6.3 版本的例子中,这个错误已经改正过来了。
大概需要划分 100 万个左右的单元,且只计算稳态流动,请问这样的问题 PC 机上算的了吗?如果能算至少需要怎样的计算机配置呢?
答:一般来说,按照 1000 个节点对 1MB 内存这样预估就差不多了,只计算稳态流动,pc 机应该差不多了,不过因为一般的 pc 机可能在连续计算 5、6 天之后就出现浮点运算错误,所以如果计算不是很复杂,采用的求解器和湍流模型不是太好计算资源,应该还是可以的。
如果使用 pc 机计算,建议至少采用 2GB 内存,主板最好固态电容,不易爆浆,电源最好功率大典,应该差不多了,现在流行四核 cpu 的,可以考虑使用四核的,这样的配置下来也不比服务器差多少。
如何在 gambit 中输入 cad 和 Pro/e 的图形?如何将 FLUNET 的结果 EXPORT 成 ANSYS 的文件?
答:autocad 需要将图形转化为 sat 格式,pro/e 可以将文件转化为 igse 或者 stp 格式。在 fluent 的 flie/export 中可以选择导出 ansys 格式的文件
courant 数:在模拟高压的流场的时候, 迭代的时候总是自动减小其数值,这是什么原因造成的,为什么?怎么修改?
这是流场的压力梯度较大,Fluent 自身逐步降低时间步长,防止计算发散。我一般的处理办法是:先将边界条件上的压力设置较低点,使得压力梯度较小一点,等到收敛的感觉差不多,在这个基础上,逐渐把压力增大,这样就不容易发散。
在 FLUENT 模拟以后用 display 下的操作都无法显示,不过刚开始用的是好的,然后就不行了,为什么?
答: DirectX 控制面板中的 “加速” 功能禁用即可
能否同时设置进口和出口都为压力的边界条件?在这样的边界条件设置情况下发现没有收敛,研究的物理模型只是知道进口和出口的压力,不知道怎么修改才能使其收敛?
当然可以同时设置进口和出口都为压力的边界条件。如果没有收敛,需要首先看看求解器、湍流模型、气体性质和边界条件时有没有出现 warning;其次,还是我上边的帖子所说的,对于可压流动,采用压力边界条件,不能一下把压力和温度加到所需值,应该首先设置较低的压力或温度,然后逐渐增大,最后达到自己所需的值。
在 FLUENT 计算时,有时候计算时间会特别长,为了避免断电或其它情况影响计算,应设置自动保存功能,如何设置自动保存功能?
在非定常计算中读入自动保存文件时如下出现问题:
Writing “F:\propane\16\160575.cas”…
Error: sopenoutputfile&: unable to open file for output
Error Object: “F:\propane\16\160575.cas”
Error: Error writing “F:\propane\16\160575.cas”.
Error Object: #f
非定常的,算了一段之后停下来,改天继续算的时候,自动保存的时候出现问题,请问如何解决?
答:File->write->Autosave 就可以实现自动保存。只要你在写自动保存文件的时候,文件名另取一个就行,比如 Writing “F:\propane\16\160575_1.cas
在计算模拟中,continuity 总不收敛,除了加密网格,还有别的办法吗?别的条件都已经收敛了,就差它自己了,还有收敛的标准是什么?是不是到了一定的尺度就能收敛了,比如 10-e5 具体的数量级就收敛了
continuity 是质量残差,具体是表示本次计算结果与上次计算结果的差别,如果别的条件收敛了,就差它。可以点 report, 打开里面 FLUX 选项,算出进口与出口的质量流量差,看它是否小于 0.5%. 如果小于,可以判断它收敛.
想把 gambit 的图形保存成图片,可是底色总是黑色,怎么改为白色呀。用 windows 中画图板的反色,好像失真很多。如何处理?
答: 首先点开 GAMBIT 的 EDIT 菜单, 其次点 GRAPHICS, 在下拉列表中点到 WINDOWS BACKGROUND COLOR BLACK 一项 在下面 VALUE 中填写 WHITE, 再点左面的 MODIFY, 就可以了.
在分析一个转轮时,想求得转轮的转矩,不知道 fluent 中有什么方法可以提供该数据。本来想到用叶片上面的压力乘半径,然后做积分运算,但是由于叶片正反壁面统一定义的,即全部定义为 wall-rn1,所以分不出方向来了
答:report/force/moment 定义需要计算的面和旋转中心就 ok 了
利用 vof 非稳态求解,结果明显没有收敛的情况下,为什么就开始提示收敛, 虽然可以不管它,继续算下去达到收敛。但是求解怎么会提前收敛?
可以吧残差图的 k 和 E 改小点,就好点了。另外 vof 中残差图一般是波动的吧,所以最好设置检测面,比如说进出口流量来确定你的计算的准确性
在 Gambit 中如何将两个 dbs 文件到入:把炉膛分成了三个 dbs 文件,现在想导入两个 dbs 文件,在 Gambit 中进行操作,但好象使用 open 命令就只能 open 一个 dbs 文件,请问这要怎么处理?
答:将其中一个导出成 iges 或者别的格式,然后就能和 dbs 一起导入了。
用 GAMBIT 生成网格时要是出现负值怎么办啊?有什么办法可以改正吗, 只能将网格重新画吗?
答:好像只能重新生成。也就是要在线上重新布点,重新生成面网格等等。
scale 是把你所画模型中的单位转化为 Fluent 默认的 m,而 unite 是根据你自己的需要转化单位,也就是把 Fluent 中默认的 m 转画为其他的单位,两中方法对计算没有什么影响吗?
答:scale 是对几何进行比例缩放,而 unit 只是改变单位,不改变几何外形的大小。比如,一个是 1m 的几何外形,通过 scale 将 m 变为 mm,那么几何外形就变成了 1mm。如果通过 unite 将 m 改为 mm,那么几何外形不变,还是 1000mm,只是表示的单位变成 mm 了
GAMBIT 处理技巧:两个圆内切产生的尖角那个面如何生成网格质量才比较好?
答:可以采用划分结构网格的方法(对于狭缝的一般处理都是生成长宽比很大的结构网格);或者将这个尖角导个圆弧之后再划分网格(也就是进行几何简化)
在 gambit 中对一体积成功的进行了体网格,网格进行了 examine mesh,也没有什么问题, 可当要进行边界类型(boundary type)的设定时,却发现 type 只有 node, element_side 两项,没有什么 wall,pressure_outlet 等。为何无法定义边界?
答:因为没有选择求解器为 fluent 5/6
如何在 FLUENT 中进行密度的选择?
FLUENT 中的密度我个人认为是指流体的状态方程,包括不可压缩(常数),不可压缩理想流体;可压缩理想流体;或者定义成温度的线性关系;
也可以通过 udf 定义成压力和温度的复杂函数,(但是我亲自实践过)定义成压力的函数要么收敛后结果不对,要么根本不收敛。
因此,如果说问题中的密度要写成压力的复杂函数,会对收敛带来一定困难。
设置,在所选材料的 density 里面选
gambit 不能正常启动的原因有哪些
- 在 Gambit 建模过程中出现界面突然跳出,并且下次运行 Gambit 时,界面调不出来,这时只需删去 gambit 工作目录下的(默认的工作目录为 \ FLUENT.INC\ntbin\ntx86)后缀为 *.lok 的文件,就会恢复正常。
- 出错信息 “IDENTIFIER “default_id” CURRENTLY OPEN”,Gambit 的缺省文件已经打开,gambit 运行失败,到用户默认目录删 default_id.* 等文件。
- 出错信息 “unable find Exceed X Server” ,GAMBIT 需要装 EXCEED 才能用,推荐 EXCEED 6.2。
在 fluent 中如何设置工作目录?在 Gambit 中如何设置工作目录?
找到桌面上的 Fluent 或者 Gambit 图标,右键图标,“属性”->” 起始位置”…
将起始位置设置为你想要的文件夹目录就可以了。